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ON THERMODYNAMICS OF THIN FILMS: THE
MECHANICAL EQUILIBRIUM CONDITION AND
CONTACT ANGLES

A. Amirfazli
Department of Mechanical Engineering, University of Alberta,
Edmonton, AB, Canada

A thermodynamic model for plane parallel thin liquid films applicable to solid-
liquid-vapor systems was presented using the detailed method. The film was
modeled as a bulk phase bound by two dividing surfaces. The thermodynamic thick-
ness of the film was established as well as excess properties such as film tension. The
analysis using this model yielded disjoining pressure definition identical to the
literature reports. The effect of definition for contact angle on the resulting mechan-
ical equilibrium condition was also demonstrated. It was concluded that from a
theoretical perspective it is important to clearly define contact angles as the angle
a sessile drop makes with either the solid phase or the thin film. However, on a prac-
tical level for most cases, the difference between using either of the two mechanical
equilibrium conditions to determine film tension or contact angle will be minimal
(ascertained by an order of magnitude analysis). The attempt was also made to
bring about clarity concerning some of the questions in the literature regarding
the thermodynamic model for thin films presented by Li and Neumann.

Keywords: Thin films; Contact angle; Wetting; Disjoining pressure; Film tension;
Interfacial tension; Mechanical equilibrium condition; Equation of state

INTRODUCTION

The study of thin films is important in both practical and theoretical
aspects. Thin films are present in emulsion and foam systems and
to a great extent determine the properties of such systems
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(e.g., stability); several thin film properties are determined by the
same forces that also govern the stability of lyophbic colloids [1]. Thin
films are also an important factor influencing contact angle phenom-
ena. Contact angle studies have been long established as a very sensi-
tive measure to investigate adhesion [2]. Contact angles are also a
determining factor in attachment of particles to air bubbles in pro-
cesses such as froth floatation and stabilizing emulsions by solid par-
ticles [3]. This article studies the influence of thin films on contact
angles for solid-liquid-vapor systems using a macroscopic thermody-
namics model. It specifically considers the commonly encountered case
of a sessile drop, which is studied using a ‘‘detailed’’ approach (unlike
the approaches used in past studies).

The subject of liquid films received considerable stimulus beginning
in 1930s when Derjaguin and others realized that the thickness of
some films is in the range of a few nanometers to 100nm. Such minute
thickness brings about the possibility of interaction between the two
interfaces a thin film makes with neighboring bulk phases and gives
it some unique characteristics. In a thin film it is virtually impossible
to distinguish between the surface layers and the bulk phase. To
address this unique situation, Derjaguin [4] introduced the notion of
the disjoining pressure, which was not included in the original ther-
modynamic treatment by Gibbs in his theory of capillarity [5] (Gibbs
confined himself to only thick films, which makes it possible to over-
look the interaction of the two interfaces of a film with adjacent bulk
phases).

There have been various thermodynamics treatments of the thin
film and its effect on contact angle mainly concerning vapor-liquid-
vapor systems [1, 4, 6�18]. The main approaches to thermodynami-
cally model thin films are as follows: a Derjaguin-type analysis where
the thin film is modeled as a plane of almost zero thickness and all
excess properties (e.g., entropy, free energy) of the film are attributed
to this plane and form the basis for the analysis (this method is some-
times called the membrane approach); the approach that was pion-
eered by Rusanov [7�9], in which a film is assumed to have a
thickness and be generally composed of three parts, i.e., bulk and
two interfaces (or dividing surfaces); the film thickness for the film’s
bulk phase (or better described as the distance between the pair of
dividing surfaces) is defined by thermodynamic analysis (this method
is known as the ‘‘detailed’’ approach or three-dimensional). The impor-
tant aspect to note in this model is that the bulk phase of the thin film
does not necessarily have properties similar to the bulk phase that
the film is connected to (or made of ) and its properties may need to
be defined by thermodynamic analysis. The same applies to the two
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interfaces (see below). Among the analyses that have not explicitly
used one of the above two approaches has been the work of Li and Neu-
mann [17]; they have used a macroscopic thermodynamic approach
based on fundamental equations and a variation principle to derive
the equilibrium condition (with special focus on the mechanical
equilibrium condition).

Clarity has been brought to the field (e.g., see Marmur [16]) regard-
ing sometimes inconsistent results for pressure inside a thin film (e.g.,
Toshev and Ivanov [10] and De Feijter et al. [12]) that results from
application of the first two approaches. However, questions (e.g.,
regarding the appropriate treatment of disjoining pressure and
measurement of film tension [19]) in the approach taken by Li and
Neumann [17] have remained unanswered, especially when dealing
with the effect of thin films on contact angles. This short article, unlike
past studies, uses a detailed approach to construct a thin film model
connected to a sessile drop to verify the findings by Li and Neumann
[17] regarding the disjoining pressure, mechanical equilibrium con-
ditions, and film tension; it also aims to bring about clarity regarding
questions raised by some researchers [19] concerning the appropriate-
ness of the model and conclusions presented in Li and Neumann [17]
(e.g., applicability of the equation of state for contact angles in the
presence of thin films).

THERMODYNAMIC FORMULATION OF THIN FILMS
FOR SOLID-LIQUID-VAPOR SYSTEMS

The thermodynamic analysis below is presented for the class of plane
parallel (or uniform) films [20] (this is the system studied by Li and
Neumann [17]). The film was modeled using the detailed approach
and is assumed to have three parts; a bulk phase and two interfaces.
The film bulk phase was assumed to be made of a mother liquid bulk
phase (k), the composition of which is assumed to be identical to the
film bulk phase; the film bulk phase may be considered inhomoge-
neous due to close proximity of its two interfaces with the neigh-
boring bulk phases (i.e., vapor (a) and solid (b) phases). The two
interfaces are bk and ak (see Figure 1) at film-solid and film-vapor
dividing surfaces, respectively. The distance between the two divid-
ing surfaces is chosen to represent the thickness of the thin film, h
(see below). The film thickness is an important thermodynamic quan-
tity that yields the unique characteristics of thin films as a result of
overlapping interface regions. The other important property for thin
films is the film tension that will be discussed later. As will be
shown, these two properties could affect the observed contact angle
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and, hence, adhesion. It is worth nothing that the methodology pro-
posed above is not a new finding or approach, but the specific system
studied, i.e., sessile drops connected to a thin liquid film, has not
been analyzed thus far using a detailed approach. This is significant
because the detailed approach, as compared with the membrane
approach, is a more intuitive methodology, which will more effec-
tively aid in clarifying outstanding issues in the literature, as men-
tioned above.

To determine film thickness, the dividing surfaces and their excess
properties need to be defined. In defining film thickness and excess
properties, we have adapted the detailed approach as outlined in
De Feijter [1] and Rusanov [15]. The solid phase is assumed ideal
(smooth, homogenous, nonreactive, and nondeformable), and the pres-
ence of external fields is not considered; the assumption of homogen-
eity also applies to the vapor phase. As such, the excess surface
energy for each of the film interfaces (i.e., uf

ak and uf
bk) can be written

for the system shown in Figure 1 as follows. Note that, in general, to
consider the inhomogeneity of the film bulk phase the excess energy
definition for the film interfaces are not the same as that of the
mother (sessile drop) bulk phase (k) with the neighboring phases a and b,

FIGURE 1 Schematic of the closed thermodynamic system including the thin
film (with film tension of cf) and bulk phases, i.e., solid (b), liquid sessile drop
(k), and surrounding vapor (a) phases. The enlarged box shows a subsystem
containing a planeparallel film; it also shows the detailed view of the thermo-
dynamic model used for the thin film, which depicts the pair of dividing sur-
faces at a distance, h, from each other (heavy lines). The bulk phases
adjacent to the thin film are b and a, which, at a distance of |Z| from center-
line of the thin film, do not have any influence on the excess properties at the
dividing surfaces.
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i.e., uf
ak 6¼ uak and uf

bk 6¼ ubk:

uak
f ¼

Uak
f

Af
�
Zh=2
0

uðzÞ � uk
� �

dzþ
Z1
h=2

uðzÞ � ua½ �dz; ð1Þ

ubk
f ¼

Ubk
f

Af
�

Z0
�h=2

uðzÞ � uk
� �

dzþ
Z�h=2

�1

uðzÞ � ub
� �

dz; ð2Þ

where u(z) is the volume density of the energy in the inhomogeneous
film region; ua;ub, and uk are the volume densities of the energy in
the homogenous bulk phases a, b, and k, respectively (in this model
all excess properties are ascribed to the two interfaces and as such
the homogeneous bulk volume density, uk, of the original phase can
be used in the above definition); Af is the area for each of the film inter-
faces; U denotes the magnitude of the energy, and subscript f refers to
film properties. The excess entropy and concentration of species at
each of the interfaces can be defined in a similar fashion.

Considering the system shown in the enlarged box in Figure 1 (a
hypothetical subsystem free to exchange matter with the rest of the
system) and assuming that the bulk phases adjacent to the thin film,
b and a, at a distance of jZj from centerline of the thin film, do not have
any influence on the excess properties at the dividing surfaces for the
system in thermal equilibrium, one can write the following relations
for total energy (UT) and total concentration of ith species in the
system (NiT):

UT ¼ Ua þUb þUf ¼ Af

ZZ
�Z

uðzÞdz; ð3Þ

NiT ¼ Vana
i þ Vbnb

i þNf T ¼ Af

ZZ
�Z

niðzÞdz; ð4Þ

where V and ni denote the total volume and volume density of compo-
nent i, respectively. Note that Equations (3) and (4) are written inde-
pendent of the original phase (k) because the focus is on the film itself.
Combining Equations (1) and (2) with Equation (3) (noting that
z� �Z) and the condition that the total volume for the system is con-
stant will result in

Uf ¼ Af ðuak
f þ ubk

f þ hukÞ ¼ Uak
f þUbk

f þUb
f ; ð5Þ
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where Uf
b is the energy for the bulk phase of the thin film; and the

superscripts denote the interfaces=phases involved. As mentioned
above, in analogy to Equations (1) and (2), expressions for excess con-
centration of species at each of the interfaces can be defined similar to
Equations (1) and (2) and, if combined with Equation (4), the concen-
tration for the ith species in the film can be written as

Nif ¼ Af ðCak
if þ Cbk

if þ hnk
i Þ ¼ Nak

if þNbk
if þNb

if ; ð6Þ

where C is the density per unit area of the ith species. Similar to a case
where a single dividing membrane is used in modeling a thin film
(i.e., the membrane approach) and, in keeping with the conventional
Gibbsian approach to define the location of dividing surfaces, the
location of the two dividing surfaces in this model were set where con-
centration of one of the species (say component one) is zero. Therefore,
at both interfaces ak and bk, one would have N1f

ak ¼ N1f
bk ¼ 0. As such,

Nb
1f ¼ N1f ¼ Afhn

k
1f ;

and, therefore, according to Equation (6) the film thickness, h, is
defined as,

h � Nf1

Afn
k
f1

: ð7Þ

The above definition for film thickness can be further improved, if one
applies the approach used by DeFeijter et al. [12], for thin liquid films
in contact with similar vapor phases (e.g., foams). To obtain a more rig-
orous definition for film thickness for solid-liquid-vapor systems (e.g., a
thin film in contact with a solid phase on one side and a vapor phase on
the other side, see Figure 1), the volume constraint for the system as
given by Equation (8) can be combined with Equations (4) and (7) to
yield Equation (9). Equation (9) provides the rigorous thermodynamic
definition for film thickness for solid-liquid-vapor systems; in principle,
all parameters in this equation are measurable:

VT ¼ Va þ Vb þ Vf ¼ ð2Z� hÞAf þ Afh; ð8Þ

h � NT1 � Vana
1 � Vbnb

1

Af ðnk
1 � na

1 � nb
1Þ

: ð9Þ

To complete the thermodynamic analysis of the excess quantities for
thin films, the film tension is introduced. Film tension (cf) is the excess
of the tangential forces per unit area of the film relative to the sur-
rounding phases [6, 11, 13]. The definition for film tension is given
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by Equation (12); this equation is constructed in analogy to the
expression of surface excess convention used to define surface tension
of a film for a symmetrical film surrounded by two similar phases
(e.g., foams as presented by Toshev and Ivanov [21]). Since there are
two different phases present on either side of the film in a solid-
liquid-vapor system, to define film tension correctly unlike the
definition in Toshev and Ludnov [21] for each of the film interfaces,
the tension should be defined separately as in Equations (10) and
(11) for liquid�vapor and solid�liquid interfaces, respectively:

cakf ¼ �
Zh=2
0

ðPnðzÞ � PkÞdz �
Z1
h=2

ðPnðzÞ � PaÞdz; ð10Þ

cbkf ¼ �
Z0

�h=2

ðPnðzÞ � PkÞdz �
Z�h=2

�1

ðPnðzÞ � PbÞdz; ð11Þ

cf ¼ �
Z0
�1

ðPnðzÞ � PbÞdz �
Z1
0

ðPnðzÞ � PaÞdz; ð12Þ

where cakf and cbkf are film surface tensions and Pn(z) is the normal
pressure component in the pressure tensor acting parallel to the mid
plane of the film. Note that the pressure inside a thin film is not the
same as the bulk phase from which the film is made (see Figure 1). This
is because in physical terms the bulk phase in the film is an inhomoge-
neous layer. Pressures Pk, Pa, and Pb are the isentropic pressures in the
homogeneous bulk phases of k, a, and b, respectively. (As the film
becomes thick (i.e., h ¼ 1), for the case of a planar film all isentropic
bulk pressures will have to be equal and, consequently, the classical
definition for surface tension of two neighboring homogeneous bulk
phases can be recovered from Equation (10) or (11). In the absence of
external field forces, the pressure component acting perpendicular to
the plane of the film must be constant, i.e., Pa ¼ Pb. Therefore, combin-
ing Equation (12) with Equations (10) and (11) will result in the relation
between the film tension (cf) and surface tensions of the film with its
adjacent bulk phases (i.e., cakf and cbkf) as follows:

cf ¼ cakf þ cbkf � hðPk � PaÞ: ð13Þ

The last term on the righthand side of the above equation has been
expressed using the definition of disjoining pressure (P) as hP. The
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disjoining pressure is the difference between the pressure of the phase
surrounding the thin film (Pa) and the pressure of the bulk phase that
the film has been drawn from (Pk), i.e., P ¼ Pa � Pk [5]. There is also
a more refined definition for disjoining pressure available [11] that bet-
ter describes the inhomogeneity of thin films, i.e., the difference
between the normal component of the pressure tensor perpendicular
to the interface in the layer (PN) and the pressure of the bulk phase that
by thinning has yielded the thin film (i.e., the original=mother phase);
therefore,P ¼ PN � Pk. Considering the refined definition forP, in gen-
eral, the disjoining pressure is not necessarily directly connected to the
definition of the film tension according to Equation (13). The thermo-
dynamic expression for disjoining pressure (i.e., Equation (15)) can be
found based on the differential form of the fundamental equation for
the system, i.e., Equation (14) (for detailed derivation of Equation
(14), see the Appendix), as:

dUak;bk
f ¼ TdSak;bk

f �PdðhAf Þ þ cf dAf þ
X

lidN
ak;bk
f ; ð14Þ

P ¼ � 1

Af

@Uak;bk
f

@h

 !
T;ni

; ð15Þ

where superscripts ak and bk represent the excess quantities with
respect to bulk phase, k, of the film. Equation (15) yields the definition
for disjoining pressure similar to findings in Rusanov [15] for constant
temperature and concentration of the ith species.

MECHANICAL EQUILIBRIUM CONDITION

The system considered in this section is identical to the one investi-
gated by Li and Neumann [17], i.e., a sessile drop connected to a thin
liquid film that is placed on an ideal solid surface (see Figure 2). Con-
sistent with the system in Li and Neumann [17], no transition zone
between the thin film and sessile drop is considered. At equilibrium
it is understood that, for such a system, temperature and chemical
potentials are constant throughout all phases in the system [17].
The mechanical equilibrium condition can be obtained by setting the
changes in the free energy of the system for a small displacement in
the system to zero (note that the bulk solid phase is considered ideal,
and as such its free energy will always remain constant, i.e., it will not
enter into the mathematical treatment of the variational analysis).
The generic treatment of such an approach is well documented in
the literature [10, 14, 22, 23], and so here, to avoid repeating mainly
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mathematical derivations that are especially well detailed in Toshev
and Ivanov [10], only the final result is provided, i.e.,

cka cos h ¼ cf � ckb: ð16Þ

Equation (16) is obtained by assuming the same theoretical definition
for contact angle, h (i.e., the angle where the extrapolated profile of the
drop meets the solid surface (i.e., at h ¼ 0): see Figure 2), as in Li and
Neumann [17] (note that typically hh (see Figure 2) is the angle that is
observed in an experiment). However, if instead of the above definition
for contact angle, its practical definition, i.e., the angle that the drop
makes with the thin film, hh, is used, (intersection of the dividing sur-
face for film and drop with vapor phase; see Figure 2), the mechanical
equilibrium condition will become

cka cos hh ¼ cf � ckb �Ph: ð17Þ

A simple way to arrive at Equation (17) is to consider the mechanical
equilibrium where the thin film meets the sessile drop (see the right
contact point in Figure 2 for a force balance) and noting that according
to Equation (13), cf �Ph ¼ cak þ cab. Equation (17) is consistent with
the reported mechanical equilibrium condition stated by Ivanov et al.
[14] and DeFeijter et al. [12] for vapor-liquid-vapor systems. Equation
(17) is also consistent with Equation (16), i.e., as the film thickness
approaches zero, hh will change to h, and hence both Equations (16)

FIGURE 2 A sessile drop in equilibrium with a thin liquid film on an ideal
solid substrate. This figure highlights the two definitions used for contact
angle that can result in different forms for the mechanical equilibrium con-
dition. At the right contact point, the force balance at the junction of the thin
film and sessile drop is depicted.
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and (17) will be identical. When the film thickness is zero, the term cf
will no longer represent the film tension, but the solid�vapor surface
tension; hence, the classical Young equation for mechanical equilib-
rium at the three-phase line will be recovered.

DISCUSSION

A comparison between the fundamental equation for a planeparallel
thin film obtained here (Equation (A2) or the differential form given
by Equation (14)) and the relations presented by Li and Neumann
(i.e., Equation (6) or (8) in Li and Neumann [17]) reveals that the
interpretation of disjoining pressure in Li and Neumann [17] is not
necessarily consistent with the classical definition (i.e., P ¼ Pa � Pk).
For a planeparallel film the term labeled disjoining pressure in the for-
mulation presented in Li and Neumann [17] is equal to the normal
component of the pressure tensor perpendicular to the interface of
the thin film, i.e., the surrounding bulk pressure (Pa), when the system
is in equilibrium. For the system shown in Figure 2, this implies that
the pressure jump across the thin film is equal to the pressure in the
surrounding phase and, hence, fixed at all times regardless of the film
thickness. Knowing that disjoining pressure is a function of film thick-
ness according to its definition (see Equation (15)), the finding that P
is equal to Pa cannot be accepted. The terminology in Li and Neumann
[17] has caused some confusion in the literature; for example, Lee [19]
has questioned the validity of the equation of state formulation for
contact angles presented in Li and Neumann (17) on the basis that
the parameter called disjoining pressure should have included
additional terms to account for molecular, ionic, and steric forces.
However, the argument by Lee [19] to refute the findings regarding
the existence of an equation of state in Li and Neumann [17] is not
valid, as Lee has not recognized the imprecise use of the term disjoin-
ing pressure in that study. Although the term disjoining pressure is
not used appropriately in the context of the mechanical equilibrium
relation, if the term labeled disjoining pressure in Li and Neumann
[17] is considered as bulk pressure (as it should be), the definition of
the film tension and mechanical equilibrium condition by Li and Neu-
mann will be consistent with its thermodynamic definition provided in
this article and, hence, their conclusion regarding the equation of state
would hold.

As shown above, depending on which definition for contact angle is
used, the mechanical equilibrium condition will take a different form
(i.e., Equation (16) or (17)). In Li and Neumann [17], when defining
the system the theoretical definition of contact angle as indicated by
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h in Figure 2 was used, which means Equation (16) will provide the
mechanical equilibrium condition; however, in effect, when solving
the variational problem to find the mechanical equilibrium condition,
Li and Neumann have applied the more commonly used practical defi-
nition for contact angle (i.e., hh in Figure 2) and found a relation simi-
lar to Equation (17). The nonexplicit switching of the definition for
contact angle in Li and Neumann [17] has led to misinterpreting their
phase rule arguments in the literature (e.g., Lee [19]). Such confusion
is similar to that regarding the relations that can be used to find the
free energy of interaction for thin films from contact angle data (see
e.g., De Feijter et al. [12] and Scheludko et al. [22]). In this article,
however, the mechanical equilibrium condition presented in Li and
Neumann [17] is confirmed by an independent method and, as such,
the arguments presented in Li and Neumann [17] regarding the exist-
ence of an equation of state for contact angles and the effect of thin
films on drop size dependence of contact angles can be accepted, as
long as the intrinsic contact angle of the system is above �10�. If
the contact angle is below 10�, neglecting or adding the Ph term in
the mechanical equilibrium condition could cause error in the surface
energetics interpretation of contact angles (e.g., if h is of the order of
10�7m and P has a typical value of 5 � 102N=m2, then including or
neglecting the Ph term in the mechanical equilibrium condition would
result in a numerical error in the order of 10�3; this error is of the
order of 1 � cos h when the interfacial tension of the system is of
the order of 10�2 J=m2 and the contact angle observed is, say, 3�).

CONCLUSION

In conclusion, a thermodynamic model for planeparallel thin liquid
films applicable to solid-liquid-vapor systems was presented using
the detailed method pioneered by Rusanov. The film was modeled as
a bulk phase bound by two dividing surfaces. The thermodynamic
thickness of the film was established as well as excess properties such
as film tension. The analysis using our model yielded a disjoining
pressure definition identical to the one reported earlier by Rusanov
[15] and others (e.g., Kralchevsky and Ivanov [24]) for vapor-
liquid-vapor systems. The effect of the definition of contact angle on
the resulting mechanical equilibrium condition was also demon-
strated. This finding highlights the importance of a clear definition
for contact angles and consistent application of the definition in
thermodynamic analysis of thin films. On a practical level, to deter-
mine film tension for low surface energy solid surfaces where contact
angles are generally large, the difference between using Equations (16)
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and (17) will be minimal. As such, the findings of our model suggest
that the method proposed by Li and Neumann to determine film
tension is acceptable, and the criticism raised in Lee [19] is not signi-
ficant on a practical level.
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APPENDIX

In order to construct the fundamental thermodynamic equation of thin
films, one can consider the process of film formation under suitably cho-
sen conditions. In the system shown in Figure 1, it is assumed that all
works are done reversibly; the overall volume of the system remains
constant and equal to the summation of the film and phases a and b;
concentration of all species in the system is the summation of the
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concentrations of each in the film, and phases a and b; and finally, the
total entropy and internal energy of the system is equal to the sum-
mation of each property in the film, and a and b, phases. If, under
the conditions stated above, the area of the film is increased by dAf

and, further, that this change does not affect the thermodynamic state
of other parameters (i.e., temperature (T), chemical potential (li), num-
ber of moles of each species (Ni), and the volume of the bulk phases a, b,
and k, being constant), then following the conventional method (e.g.,
see De Feijter [1]), the work to extend the thin film will be

W1 ¼ ðPa � PkÞhdAf ;

W2 ¼ cbkf dAf � cabdAab;

W3 ¼ cakf dAf :

Using the definition of film tension (Equation (13)) and the above rela-
tions, one will have:

W4 ¼ W1 þW2 þW3 ¼ cf dAf � cabdAf

The above process requires that material for forming the extended film
be brought into the film from its surroundings; consequently, the
‘‘material work’’ associated with the film will be:

W5 ¼
X

ldNif

The increase in volume of the film, dVf, is equal to the decrease in the
volume of the bulk phase, a (b is an ideal nondeformable solid phase)
and, according to the assumption of constant total volume for the
system, one has:

W6 ¼ PadVa ¼ �PadVf

The summation of the above works (i.e., W4�6) on the system should
be equal to the change in the total free energy of the system (FT) for
a reversible and isothermal system. Noting that the thermodynamic
state of the bulk phases a, b and k were kept constant in this process,
as mentioned above, there will not be any change in their free energies.
Therefore,

dFT ¼ dFf þ dFab ¼ W4 þW5 þW6;

where

dFf ¼ dFbk
f þ dFak

f þ dFb
f :
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From the above the free energy for the thin film can be found as

dFf ¼ �PadVf þ cf dAf þ
X

lidNif :

If one allows thermal exchange between the thin film system and its
surroundings, i.e., relaxing the isothermal condition of the system,
the above relation will take the following form:

dFf ¼ �SfdTf � PadVf þ cf dAf þ
X

lidNif :

To find the internal energy change (dUf) for this system the Legendre
transformation can be utilized:

dUf ¼ TfdSf � PadVf þ cf dAf þ
X

lidNif : ðA1Þ

To find the film’s internal energy (Uf), the Euler theorem can be applied
to Equation (A1), i.e.,

Uf ¼ TfSf � PaVf þ cf Af þ
X

liNif : ðA2Þ

The change in the internal energy for the bulk portion of the modeled
thin film can be written as follows (analogous to the usual formulation
for any other bulk phase):

dUb
f ¼ TdSb

f � PkdðhAf Þ þ cf dAf þ
X

lidN
k
if ; ðA3Þ

where the superscript b refers to the bulk portion of the thin film. Sub-
tracting Equation (A3) from Equation (A1) will result in the following
equation, which can be used to define thermodynamically the film ten-
sion and disjoining pressure, among other properties for a thin film:

dUak;bk
f ¼ TdSak;bk

f �PdðhAf Þ þ cf dAf þ
X

lidN
ak;bk
f : ðA4Þ
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